Evolution Equations on Gabor Transforms and their Applications
نویسندگان
چکیده
We introduce a systematic approach to the design, implementation and analysis of left-invariant evolution schemes acting on Gabor transform, primarily for applications in signal and image analysis. Within this approach we relate operators on signals to operators on Gabor transforms. In order to obtain a translation and modulation invariant operator on the space of signals, the corresponding operator on the reproducing kernel space of Gabor transforms must be left invariant, i.e. it should commute with the left regular action of the reduced Heisenberg group Hr. By using the left-invariant vector fields on Hr in the generators of our evolution equations on Gabor transforms, we naturally employ the essential group structure on the domain of a Gabor transform. Here we distinguish between two tasks. Firstly, we consider non-linear adaptive left-invariant convection (reassignment) to sharpen Gabor transforms, while maintaining the original signal. Secondly, we consider signal enhancement via left-invariant diffusion on the corresponding Gabor transform. We provide numerical experiments and analytical evidence for our methods and we consider an explicit medical imaging application.
منابع مشابه
Texture Classification of Diffused Liver Diseases Using Wavelet Transforms
Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure. The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There are some approaches to develop a reliable noninvasive method of evaluating histological changes in sonograms. The main characteristic used to distinguish between the normal...
متن کاملPeriodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملSmoothing Properties of Evolution Equations via Canonical Transforms and Comparison
The paper describes a new approach to global smoothing problems for dispersive and non-dispersive evolution equations based on the global canonical transforms and the underlying global microlocal analysis. For this purpose, the Egorov–type theorem is established with canonical transformations in the form of a class of Fourier integral operators, and their weighted L–boundedness properties are d...
متن کاملCharacterizations of Gabor Systems via the Fourier Transform
We give characterizations of orthogonal families, tight frames and orthonormal bases of Gabor systems. The conditions we propose are stated in terms of equations for the Fourier transforms of the Gabor system’s generating functions.
متن کاملL2-transforms for boundary value problems
In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.
متن کامل